HEAT TRANSFER WITH TWO-~-DIMENSIONAL LIQUID
FILTRATION INTO SHATTERED ROCKS
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An analytic solution is obtained for problems concerning heat transfer by the filtration of a
heat~transfer agent into shattered rocks, and a comparison is carried out between the cal-
culation results for different models of the heat~transfer process.

One of the principal problems when investigating thermal processes in underground thermal boilers (UTB)
is the establishment of the mechanisms of the interphase heat transfer during the liquid filtration into the
shattered rocks.

An estimate of the error in calculating the coolant temperature, due to nonuniformity of the filtration
flow and by the assumption that the interphase heat-transfer coefficient is equal to its quasi-steady-state value,
can be determined by comparing the solutions of problems in which the non-steady-state heat transfer inan
underground thermal boiler is deseribed by taking account of the temperature gradient in blocks of rock and
with the assumption of linearity of the interphase heat-transfer {1].

1. We shall represent the structural model of the underground thermal boiler in the form of a purely
fractured medium, consisting of impermeable blocks of rock with a regular geometric shape and identical di-
mensions with a regular packing. Inthe space between the rocks, determined by the magnitude of the fracture
porosity, a liquid is moving in the directions, and with velocities, governed by the distribution of the pressure
gradient and of the fracture permeability of the medium,

We shall assume that one-dimensional conductive heat transfer takes place in the blocks, in a direction
normal to their surfaces, and that the thermal resistance at the rock and liquid interface is small by compari-
son with the thermal resistance of the blocks of rock. ’

If we take into account that for the conditions of the underground thermal boiler, the effect of noniso~
thermal filtration of the coolant on its mass velocity can be neglected, the mathematical formulation of the
problem will have the form
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Suppose that Wy and Wy are the solution of Eq. (3) with the condition (7), and G is independent of T when
i<k=n, \

We shall assume, that the blocks have the shape of plane-parallel unrestricted plates. Then, by intro-
ducing the variables 0= (Ty—T)/(T(—Ty), ¥ =22z/a and Fo=4A,7/p ca? and taking account of the smallness of
the right-hand side of Eq. (2), we shall have
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We apply to the problem (8)-(12), the Laplace integral transform:
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Solving Eq. (13), taking account of condition (16), we obtain
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Converting to ordinary differential equation, we obtain
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and the first integral of system (20) represents the family of flow lines
C=F(x yx) (21)
where y=y/x.
Taking into account Eq. (20) and (21), we obtain
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The solution of Eq. (22), taking account of Eq. (19), has the form
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Carrying out the inverse transformation [2], with ¥ =1, we shall have
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The temperature of the coolant at the end face of the production well (at the outlet from the underground thermal
boiler) is
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2, In the case of linearity of the interphase heat transfer between the rock and the liquid, the mathemati-
cal formulation of the problem will have the form
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“We introduce the variables 6, 67 and £ =on7/ cpf.(1 — m) and apply the Laplace integral transform to the
problem:
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The solution of Eq. (35)-(37), has the form
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Carrying out the inverse transformation [1], we obtain
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When q,, — « (thermally uniform medium), the position of the convective temperature front is
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We note that 6, =0 when 7< 7, and the time of convergence of the convective temperature front at the contour
1"p is .
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and kyy is determined by the results of [3].

Taking into account the assumptions made, the relations obtained permit the temperature of the coolant
to be determined at any point of the region and at the outlet from the underground thermal boiler for different
models of the heat-transfer process, if function (23) is known, depending on the filtration-rate distribution of
the coolant,

3. We shall consider a few special cases:

a) With rectilinear filtration of the liquid (Wx =const), the flow line equation is y =C.

Then
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which coincides with [2].
b) With plane~-radial filtration of the liquid (Wpr=G/ 2xr; rl=x?+y?)
nHo, (2 —r%) - 4nHA.r (rr—r3)
p= ¢;G PP et bye, G

¢) In the case of filtration of the coolant from two injection boreholes, for which the coordinates of the
axes are x= *R; y =0, to the production well (x=y =0), the boundary conditions have the form
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If the mass filtration-rate potential satisfies the Laplace equation, the solution of Eq. (3) with conditions
(45) can be represented in the form
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d) Inthe case of filtration of the coolant from an injection borehole (x=R; y=0) and the production well
x=y=0)
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The solution of Eq. (3) with the condition (51) is
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Fig. 1. Change of 6y versus ¢gon T The dashed lines
are 0, =94.96 with &; 1) 68.0, 2) 91, 82 3) 114.83, 4) 136.64,
5) 182.45, 6) 250.87. Solid lines are p;=46.52 for £; 1)
33.52, 2) 44.70, 3) 55.87, 4) 67.05, 5) 89.40, 6) 122,92,
Dash~—dot lines are p,=20.67 with £: 1) 14.90, 2) 19.87,
3) 24.83, 4) 29.80, 5) 39.73, 6) 54.63 [calculation by Eq.
(40)]. Points are a calculation by Eq. (27); ¢, deg.
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Fig. 2. Change'of 6, versus ¢ at the face of the production well by Eq. (53) and (40), for p4:
1) 11.62, 2) 20.67, 3) 46.52, 4) 94.96, 5) 186.07. .

Fig. 3. Change of 6 at the face of the production well versus ¢=Ger/r R?Hep,0p: 1) Caleu-
lation by Eq. (54) and (52); 2) by Eq. (53) and (40); points are a calculation by Eq. (63) and

(27).
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The temperature at the end face of the production well Eq. (28) is
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and ¢ and T when ¢ > 0 are connected by relations (48) and (52). hi i re < R, then Eq. (54) assumes the form
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It can be seen from Figs. 1-3, that if §;= g* ~1 at T'y for ¢ =0, then the values of 8,, determined with a
finite value of ay and for ap = ®, almost coincide. Using the simplified solution [4], we obtain the condition
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Therefore, if —
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or when k« 1
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where 6%2.2 when *=0.999, then the values of 6, can be determined, by using the formulas for a thermally
uniform medium,

Comparison of the results of the calculation of 6; and 6, (Figs. 1-3) for the models considered of the
heat~transfer process between rock and liquid (A, =2.13 W/m - deg and 2 =10 m) permit the conclusion that the
thermal cycle in the underground thermal boiler is close to quasi-steady-state, and that a model constructed
by taking account of the linearity of the interphase heat transfer can be used for its thermal calculation.

NOTATION

i, j, unit vectors of the rectangular-coordinate system; I, well contour; I, external normal to I'; n, num-
ber of wells; W, mass filtration rate of coolant; @, interphase heat-transfer coefficient; 2, thermal—-conduc—
tivity coefficient; c, specific heat; p, density; S, specific surface area or rockblocks; m, fracture porosity;

a, linear size of block; H, height of underground thermal boiler; 7, time; T, temperature; R, distance between
injection well and production well; b, crack spacing; ky,, minimum value of reduction factor; r, radius of well;
T,(x), modified Bessel function of first kind, zero order; s, complex argument of Laplace integral transform;
p=0, 1, 2 (respectively, for blocks in the shape of plates, cylinders, and spheres). Indices: r, [, i, and p, refer
to rocks, liquid, injection, and production wells, respectively.
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